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EXECUTIVE SUMMARY

OBJECTIVES

To develop a mathematical model for a transducer array which can handle nonlinear
devices such as the HLF-6A hydraulic transducers. The model should be capable of
handling both sinusoidal and nonsinusoidal electrical inputs.

APPROACH

Since the model must be able to handle nonlinear devices it is necessary to formulate
the model in the time domain rather than in the frequency domain. The internal com-
ponents of the transducers were modeled using standard hydraulic flow equations which
are in the form of nonlinear ordinary differential equations. The equations are nonlinear
since the pressure drop across a hydraulic valve is proportional to the square of the flow
through the valve. The acoustic radiation interaction impedances were obtained in the
frequency domain using the boundary element program CHIEF. The frequency-domain
interaction impedances were then transformed to the time domain using an FFT routine
to produce interaction impulse responses. The radiation impedance relations in the fre-
quency domain become convolution relations in the time domain. When these radiation
convolution integral relations axe combined with the model for the transducer internal
components, the result is a coupled set of nonlinear differential-integral equations that
is solved numerically by an explicit time-stepping procedure similar to a second-order
Runge-Kutta method.

RESULTS

Our time-domain model was first applied to an array of simple linear transducers for
which the solution could be obtained by conventional frequency-domain methods. The
agreement between the results of our time-domain model and the frequency-domain results
was excellent. A comparison was also made between our model and a model developed by
Hydroacoustics, Inc. for a single transducer element. Again the agreement was quite good.
Finally, predicted results using our time-domain model were compared with experimental
results for a three-element close-packed array. The agreement was reasonably good in
both level and trends.
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1 INTRODUCTION

This report contains a description of a mathematical model for a hydroacoustic trans-
ducer array. Although the model was developed with the HLF-6A transducer in mind, it
can be applied to other hydroacoustic transducer arrays. This model is based partly on
previous modelling work for the HLF-4 transducer [1], but involves new work relating to
acoustic radiation loading. Previous models have attempted to couple frequency-domain
models for the acoustic field with time-domain models for the internal components of
the transducer. In this report we present a complete time-domain model for the coupled
transducer/acoustic-field problem which is applicable to both single elements and arrays.
This model can also handle nonsinusoidal signals, which is important since linear superpo-
sition is not valid for nonlinear devices. The acoustic radiation model involves obtaining
certain interaction coefficients in the frequency domain with a boundary element program
called CHIEF [2,3] and then transforming these coefficients to the time domain by using
Fourier transforms. When these coefficients are combined with a model for the internal
components, the result is a coupled set of differential-integral equations that can be solved
by an explicit time-stepping procedure with prescribed initial conditions.

Since the model for acoustic radiation loading is new, it was first applied to a simple
linear transducer array for which the solution could also be obtained by the standard
frequency-domain approach. Section 2 contains a description of the linear model that
includes the new acoustic radiation approach. Results of the time-domain model are com-
pared with corresponding frequency-domain results in order to validate the new acoustic
radiation approach. The agreement was excellent. Section 3 contains a description of
the models for the various components of the HLF-6A hydraulic transducer, such as the
first-stage servovalve, the second-stage valve, the drive cavity, the radiating disks, the
pressure compensation device, and the radiation loading. Although the equations for this
transducer are more complicated than those for the simple linear transducer, the form
of the equations and the general solution procedure are essentially the same. Computed
results for a single HLF-6A transducer in water are compared with computed results for
the Hydroacoustics, Inc. (HAI) model when several drive levels are used and when the
input signal is sinusoidal in time. The agreement is quite good for all drive levels, but
there are some small departures at the higher drive levels (less than 1 dB), which we
attribute to differences in the radiation models. Results are also presented for a proposed
six-element array. Since the interelement spacing for this array is quite large, the perfor-
mance of each element is not greatly different from that of a single element in the free
field. Predicted results using our time-domain model are also compared with experimen-
tal results for a three-element array which is fairly closely packed. The comparison is
reasonably good both in level and in trends. Section 4 is a summary of our conclusions
and recommendations.



2 LINEAR MODEL

In this section a time-domain radiation model will be developed and applied to a simple
lineax transducer. The resulting linear model will be used to validate the time-domain
approach to the acoustic radiation loading which will later be applied to the nonlinear
HLF-6A hydroacoustic transducer. The simple linear transducer is shown in figure 1. It
consists of two rigid circular pistons of mass M placed symmetrically at the ends of a
rigid cylindrical housing. A spring of stiffness K restrains each piston and each piston is
driven by the same prescribed force F.

Subsection 2.1 gives the mass/spring relations for this simple linear transducer as well
as a time-domain formulation for acoustic loading on the transducer. The result is a
system of coupled differential-integral equations with specified initial conditions. The
solution procedure for solving this system is described in subsection 2.2. In subsection 2.3
the results for a three-element array are compared with those from a frequency-domain
model after the initial transients have died out, in order to validate the time-domain
formulation.

... PISTON

IFCYIDIA
: •HOUSING

- ---------------------- SYMMETRY
PLANE

Figure 1. Simple linear transducer element.

2.1 BASIC EQUATIONS

The differential equation describing this simple device is

Mii + Ku = F - Fra'd(1

where Fr" is the acoustic radiation force on the piston and u is the displacement of the
piston. The acoustic radiation force is given by

Fr•d =L pdA (2)
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where p is the acoustic pressure and A is the surface of the piston in contact with the
water. Now consider a planar array of N of these elements. The radiation force on the
m-th element of an array can be expressed as a linear function of the piston normal
velocities. In the frequency domain this relation takes the form

N
F.Gd(w) = , zm.(w)v.(w) (3)

where F," is the radiation force on the m-th element, Zmn is the mutual radiation
impedance between the m-th and n-th elements, and Vn is the velocity of the ,n-th piston.
These acoustic interaction impedances z,, are obtained by using the boundary element
program CHIEF, which is based on the Helmholtz integral equation

pOC) =Gi( )b- (C,) + iwpv ()G(C,a)] dS (4)

where S is the radiating surface (including all array elements), v is the normal velocity, p
is the fluid density, and G is the free-space Green's function. To obtain zn the integral
equation 4 is solved for p when all the piston velocities are set to zero except for vn, which
is set to 1. The resulting pressure is integrated over the m-th piston, yielding Zmn.

When the interaction relation in equation 3 is transformed into the time domain via
a Fourier transform, it takes the form

N t
F~rd(t) = r-'.(t) + E Cmn(r)Vn(t - r)di (5)

where Cmn is the Fourier transform of zmn for m 5 n, rg' is the real, high-frequency
asymptotic limit of zmm, and Cm, is the Fourier transform of zmm - r•. It turns out that
for numerical reasons it is better to work with accelerations than with velocities. The
conversion of the interaction equations 3 and 5 from velocities to accelerations gives the
frequency-domain relation

N

Fmd (W) = Mi (w) a(W) (6)
n=1

and the time-domain relation

N P

F~r."(t) Z jo ]1 /Ln(Tr)Cn(t - 7-) Lir (7)

where mmn(w) = zmn(w)/iw and

mn(t) = Cmn (r)d + m3•=n (8)

= fjCmm (r) dr +r<0 m=n()

3



Figure 2 is a plot of the impulse interaction coefficient (12 appearing in equation 5 versus
normalized time. This plot illustrates the reason for expressing the convolution integrals
in terms of acceleration instead of velocity. The fact that the functions C,,,t (m # n)
alternate in sign over a very short interval gives rise to subtraction errors when the
convolution integrals are evaluated. Figures 3-5 show the mutual impulse functions A11,
A12, and A13 appearing in equation 7 versus normalized time. Notice that these functions
are significantly nonzero only over a small time interval (nominally the time for sound to
travel across both the interazting elements). To obtain the mutual impulse functions un,,,
the CHIEF [3] program was used to calculate the mutual radiation impedances zn over a
broad frequency range. The mutual impedances were divided by iw and transformed to the
time domain by using an FFT routine. The self-impulse function /Unn has a discontinuity
at t = 0. To eliminate the resulting high-frequency oscillation in the computed Am,, we
use the fact that the even extension of a time function has a Fourier transform which is
twice the real part of the original transform. Thus, can be computed by taking the
FFT of twice the real part of z,,,/iw.
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Figure 2. Mutual velocity impulse coefficient for a pair of elements (d/s = 2).
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Figure 3. Self-acceleration impulse response (dls - 2).
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Figure 4. Mutual acceleration impulse response /12 (dfs = 2).
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Figure 5. Mutual acceleration impulse response s13 (d/s = 2).

Combining the acoustic interaction equation 7 with the element equation 1 gives the
following coupled system of differential and integral equations:

N t~

Mam,+ Kum = FmZ]PmfEt(7)an,(t -1) dr (l0a)

'.m = am (lob)
ilmn = V, m= 1,...,N (10c)

where Fm is the prescribed force on the m-th element. Notice that there is a set of
equations like 10 for each element in the array and that these sets of equations are cou-
pled through the convolution integrals in 10a that involve histories of all the element
accelerations. It will be assumed that the elements are not moving before t = 0 and thus

M(O) = vm(0) = am(O) = 0 m = 1,...,N (11)

The differential-integral equations 10 and the initial conditions 11 describe the problem
to be solved numerically.

6



2.2 SOLUTION PROCEDURE

In this section a solution procedure will be described for the coupled set of integral-
differential equations 10. As with systems of ordinary differential equations, the solution
is advanced successively by time steps of length 6 beginning at the initial time t = 0. To
describe the method it is only necessary to specify how the solution is advanced from a
time t, = rb to the next time 4.+1 = t, + 6.

It will be convenient to first write the equation 10a in a somewhat different form.
When t is in the interval [tv, t 1+J] the integrals in 10a can be split as follows:

mn(r) an(t -r) dr = I m(r)an(t - r) dr + I.Am.(r)an(t - r)dT (12)

An element in the array does not feel the effects of its neighboring elements immediately
since there is a time delay required for sound to tiavel between the elements. Thus,
•,n(t) = 0 for t < din/c, where dmin is the minimum distance between any two elements
and c is the sound speed. It will be assumed in what follows that the time step 6 is smaller
than d .. n/a With this assumption

0 l mn(r)an(t - r) dr = 0 m n (13)

since t - t, 6 b < d/c. When m = n the first integral in equation 12 can be approximated
using the trapezoidal rule as follows:

t-"trminm(r)an (t - T) dr "- I[ IMM(0)a.(t) + Amm(t - t.)am (4)] (t - 4) (14)

It follows from equations 12 to 14 that

N t

>II jAmn(7jan(t - T) cir = [m()al)+Immt- t,)am(t4)] (t - 4v) +

E j mn(r)an(t - r) dr (15)
n---1 tr

Substituting 15 into equation 10a and solving for am yields

am(t) = M I'(O)( - ) Fm(t) - Kum(t) - !Amm(t - tt)am(tv)(t - 4.) -

N t

E I"m.(r)an(t - r) dr (16)

Combining 16 with the last two equations of 10, we obtain

7



+ 1 2
?,,m(t) -- M + ½m,.(O)(t - t.) F,(t) KU,(t) - lim,(t - tr)G,(tt)(t - t7) -

N ,

E It-tr tn.(,r)aii(t - 'r) drJ (17a)

V=i(t) (17b)

Notice that the right-hand side of equation 17 involves only the two unknown functions
urn, vmr, and past values of an which are known at this stage.

The systems of equations 17 can be solved in the same manner as a system of ordinary
differential equations. The only modification necessary is to update the accelerations an
at the end of each step by using equation 16. It should be pointed out that a time step
must be completed for each element in the array before the next time step is addressed.
It is necessary to store the time histories of the accelerations for each element in the array
and to update these histories following each time step. Since the /p 's are essentially
zero outside a small time interval, only the relevant portions of the time histories need to
be saved.

The results to be presented later in this paper were obtained using a second-order
Runge-Kutta method known as Heun's method [4]. For a system of ordinary differential
equations

•(t) f f(Y (t),1 0 (18a)
S= YO (18b)

This solution procedure advances the solution Yn at time tn to the solution yR+, at time

tn+1 by using

Y,+1 = , + [2 [in + f(Y. + , , + ,,+ 1 )]6 (19)

The algorithm given by equation 19 together with the formulas for updating accelerations
can be used to solve the differential-integral equations given in equation 17.

2.3 RESULTS

In this section we will present computed results for a single element and for a 1 x 3
array as shown in figure 6.

The results will be checked against those obtained from an independent frequency-domain
analysis. With the dimensionless variables defined in table 1, equation 10 can be written
as follows:

8



d I- d

Figure 6. Three-element array configuration.

Md. + Kfim F. -j E -,fn() df (20a)

di-T = n .10b)

di-m = j' m=1,...,N (20c)

Table 1. Normalized variables.

- " time P(O) - F(sf/c) drive force

1 1i-= -u(si/c) displacement pQ) =-20(11/c) A

f(ý-= -v(sf/c) velocity =M mass

a() = 5a(sf/c) acceleration I = K stiffnesspc28

The dimensionless parameters in equation 20 were chosen to make the low-frequency
radiation mass of the circular piston equal to the mass of the piston and to make the
piston diameter one-tenth of a wavelength at the resonance frequency. This leads to the
dimensionless parameters

K 1 = 2=r2 (21)
3 75

9



The dimensionless forcing functions F, were taken to have the form

Ip.1 sin(wt)

- -. 1- sin ~2w- (22)

where A is the acoustic wavelength. In the numerical examples the force amplitudes
IF. I/pC2 3 2 were taken to be 1. The spacing d between elements for the array example
was taken to be 2s.

Figures 7-10 show a comparison of the frequency response of the outer and middle
elements of the 1 x 3 array when both a frequency-domain approach and a time-domain
approach are used. The agreement is very good. Figure 11 shows the solution of the
differential-integral equations 10 for a single element. The steady-state normalized ve-
locity amplitude for this computed solution and the value obtained from a steady-state
frequency-domain analysis of this problem were both 15.5. Figure 12 shows the computed
time response for the middle element in the 1 x 3 array. Due to the large number of
oscillations in the given time interval only the envelope of the response is discernible. It
takes a very long time for the response to reach steady state (about 300 times as long as
it takes sound to travel across the array).

Figures 13-15 show the effect of adding an increasing amount of damping resistance
to the linear transducer model. The Q values given are for the element operating in a
vacuum and are thus a measure of the internal resistance. As the internal losses increase,
the level of the response decreases and the time to reach steady state decreases. The effect
of losses is important since hydroacoustic transducers typically have very high internal
losses.

10
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Figure 13. Middle element of three-element array, Q=100.
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Figure 15. Middle element of three-element array, Q=10.
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3 HYDROACOUSTIC MODEL

Figure 16 is an idealized representation of the internal components of a hydroacoustic
transducer like the HLF-6A. The transducer consists of two metallic radiating disks which
are clamped around their circumference to a cylindrical housing. The disks are driven
at their centers by two drive pistons, which in turn are driven by the pressure in an oil-
filled drive cavity. The drive cavity pressure is modulated by a sliding valve that controls
the flow into and out of the cavity. This valve is driven by a hydraulic servovalve. The
servovalve is called the first-stage valve and the main valve is called the second-stage valve.
As the second-stage valve slides back and forth, the drive cavity is alternately coupled to
the supply and return ports of a hydraulic pump. The pump is designed to maintain a
constant pressure at the supply port. The supply pressure is much higher than the return
pressure.

This section contains descriptions of the mathematical models for the main compo-
nents of the HLF-6A transducer. The equations for the first-stage servovalve are given in
subsection 3.1 and the equations for the second-stage valve are given in subsection 3.2.
The equations for the added stiffness due to the pressure compensation mechanism are
given in subsection 3.3. The mathematical model for the radiating disks, drive cavity, and
the acoustic loading is presented in subsection 3.4. The model for the acoustic loading is
a straightforward extension of the model previously described for the simple linear trans-
ducer. A summary of the differential-integral equations for an array of hydroacoustic
elements is presented in subsection 3.5. Subsection 3.6 presents results obtained from
this model for both single elements and arrays. Single-element results are compared with
those of an existing HAI model for various drive levels. Results for a proposed six-element
array are compared with those of a single element. Model results for a close-packed three-
element array are compared with experimental results.

3.1 FIRST-STAGE SERVOVALVE

This section describes a mathematical model for the first-stage servovalve used in the
HLF-6A and its associated drive circuit. A diagram of the servovalve and drive circuit is
shown in figure 17.

The internal components of the servovalve (enclosed by a dotted box in figure 17) were

not modeled in detail. Instead an empirical relationship of the form

S= K..1 (23)

was used to relate the drive current I and the servovalve displacement x,,. We will next
show how to relate the servovalve displacement to the servovalve output flow Q. and the

16
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main valve displacement x,. Let us define P1 and P2 as follows:

P= P. ifX, <0 { P, ifz. f<0 (24)

Then the flow Q, through the servovalve satisfies the equations

P1- I = P2 - 2i (25)

where I. is the sign of Qt, and fi is a constant that depends on the geometry of the valve
and the density of the fluid. Thus

ItQ,, > 0 (26)

The flow Q. also satisfies the orifice equations

P~P.P ~ 2 VtceQ (27)

where a,1 depends on the geometry of the two identical output orifices and on the density
of the fluid. The flow Qp through the shunt orifice satisfies

P. - .' = I.a 2Q2 (28)

where I. is the sign of Qp and a 2 is a constant that depends on the geometry of the shunt
orifice and on the density of the fluid. The flows Q., Q., and Qp also satisfy the balance
equation

QV = Q, + Q. (29)

It follows from equation 29 that

IQ, = I.(QM- Q.) _Ž 0 (30)

Addition of the equations 25, 27, and 28 yields the equatieu

P1 - P2 = I.a 2Q2 + 21val Q2 + 24,-PQv (31)

Combining equations 29 and 31 gives

P1 - P2 = I,0 2(Q.- Q.)2 + 21tcQl + 21v (32)
III

or

rI(A 2 + 21ct, + 21.) Q,2 - (21.c 2Q.)Q0, + (I°a 2Q.2 - PA + P2) 0 (33)

The quadratic equation 33 has the solutions

Q, = -B + I, /B 2 -4AC (34)
2A
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where I, = 1 and

A = I. + 21 (ai +-) (35a)

B = -21.Q 2Q. (35b)

C = a2 Q~P.2 - +P 2  (35c)

Since Q. must be real, we must have

B 2 - 4AC >_ 0 (36)

As we are ignoring the compliance of the end cavities, the flow Q. is related to the
displacement zv by

Qe = Aviv (37)

From equations 28, 29, and 37 it follows that the driving force F, on the second-stage
valve spool is given by

F, = (P. - P)A,- I=aA,,(Q,, - Aviv) (38)

However, Q. can be determined by solving the quadratic equation 33, given i. and hence
Q.. The quantities , I,., and I, are determined so that the conditions 26, 30, and 36 are
satisfied. Thus, we have shown that

F,= f(x i.,,t) (39)

3.2 SECOND-STAGE VALVE

The second-stage valve is pictured in figure 18. The valve spool is shown in the neutral
position (x,, = 0). The overlap between the valve spool and the valve sleeve on each side
of the drive cavity opening when the valve spool is in the neutral position is called the
valve overlap (wol).

The equations describing the flow through the supply (return) port of the valve into
the drive cavity are different when the supply (return) port is open and when it is closed.
When the supply (return) port is open, the flow at low frequencies is given approximately
by the flow through an orifice whose area is changing slowly with time. It is shown in
a previous paper [1,Appendix D] that the pressure drop across the open supply port is
given by

P 2 - = Ph QIQ.I (40)2 17A 2P
where P1 is the pressure on the upstream side of the supply port, P 2 is the pressure on
the drive cavity side of the supply port, AP is the area of the supply port opening, and
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Figure 18. Second-stage valve.

q is the ratio of the flow stream area at the point of greatest contraction to the valve
opening area. The pressure P1 is different from the supply pressure P. since there are
passages and fittings between the pump and the valve. Similarly, the pressure drop across
the return port when it is open is given by

P h QIQT I (41)
2 j2A2(

where P3 is the pressure on the downstream side of the return port and Ap, is the area of
the return port opening.

We next derive expressions for the areas A.., A,p as a function of valve position. The
supply port opening is pictured in figure 19. The rounded corners shown on the valve
sleeve and the valve spool are greatly exaggerated (rad=0.002 in.). When the supply port
is open we have

X, = V(zt8 - wol +"-2. rad2 + (rcl + 2. rad)2 - 2. rad (42)

where z., is the displacement of the valve from neutral position (a positive increase in
z., tends to open the supply port). The area, A., of the supply port opening is given
approximately by

Asp -- ,DDX, (rcl < D.) (43)

where D, is the diameter of the valve spool.

Similarly, when the return port is open we have

X, = /(-xi. - wol + 2. rad2 + (rcl + 2. rad)2 - 2. rad (44)

and
AlP "-* rD.X2 (rcl A). (45)
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Combining equations 40 and 43 results in

P1- A = Ph QoIQo (46)

Similarly, combining equations 41 and 45 results in

A- P3 = Ph Q, IQr I (47)
2 t 27 2 D 2 z 2

The pressure drops P. - P1 and P 2 - PD axe given by

PP - P, = L°9° + phQ.IQ.I (48)
2172A,2

and P2 - PD= LoQs + PhQ, QI (49)

where L, is the supply flow path inertance, Lo. is the supply output flow path inertance, A.
is the supply flow path equivalent area, and A,. is the supply output flow path equivalent
area. The pressure drops PD - P2 and P3 - P, are given by

P3 - P, = LQ0 + PhQT IQvI (50)

2v72A2

and PnD - P2 = L,&oQr + PhQwIQT l 
(51)

where L, is the return flow path inertance, Lo is the return output flow path inertance, A,
is the return flow path equivalent area, and A,. is the return output flow path equivalent
area.
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Combining equations 40, 48, and 49 yields

(r r~)D (_ 1 1 )
2-D D X2 Q.IQoI (52)

when the supply port is open. Similarly

(L' + L")Q" = PD - P- ,I2 XA + ";j2 + T2DH )QQI (53)
21 D X2 Q, IQ,[ 83

when the return port is open.

When the supply port is closed the leakage flow is given by [1,p.15]:

Q (54)

where
12 p1=L 27 2l7r2D (rcl) 2

RL = rD1,(rcl)3 ' ko = Ph ZL = wol - . (55)

and #u is the shear viscosity coefficient of the fluid. Similarly, when the return port is
closed

dosed = Sgn(PD - Pr) [-14g& + V/1k4RL + k!IPD - Pr ] (56)

where now ZL = z,, + wol.

The equation of motion for the second-stage valve spool can be written in the form

M, oi , o + 2K:,,o = F, + Fjg, (57)

or equivalently
1

61, = - (Ft, + FfI, - 2K.:,o) (58a)
iv, = v1. (58b)

where z.. is the lineal valve displacement, MA,, is the mass of the valve spool, Ko is the
stiffness of each of the two restraining springs, F. is the driving force on the spool given
in equation 33, and Ff 1m is the axial force on the spool due to the flow through the valve.
The force Fp0o. is given approximately by [5]:

F 1, = -sgn(z,,)phQU cos0 (59)

where ph is the density of the hydraulic fluid, Q is the flow through the valve (supply or
return), U is the velocity of the jet at the point of maximum contraction (vena contracia),
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and coo - 0.36 (9 is the angle of the flow relative to the axis). Since Q = qUA, where
A is the area of the valve opening, equation 59 can be written

F1. = -0.36 sgn(x,.)-0- (80)

The area of the valve opening is given approximately by

A - rDx, (61)

Thus, equation 60 can be written

Ff.,,= -0.36 sgn (z..).'p.'

Since the flow through the closed port is small, we can write approximately

FC -0.36 sgn(z.) , + Q!) (63)

3.3 PRESSURE COMPENSATION

In order to allow the transducer to operate at large depths the interior of the transducer
is filled with a pressurized gas. The pressure of the gas is adjusted to be equal to the
hydrostatic pressure in the water at the operating depth. Thus, the pressure Po of the
interior gas is adjusted so that

Po = P=tvn + pgD (64)

where Pa.m is atmospheric pressure, p is the density of the water, g is the acceleration of
gravity, and D is the operating depth.

In addition to providing depth compensation, the pressurized gas also presents a dy-
namic stiffness to each of the radiating disks. By symmetry it is only necessary to consider
one of the radiating disks and half of the interior volume. When the disk vibrates the
interior volume changes which in turn produces a change in pressure. It will be assumed
that the pressurized gas obeys the ideal gas law

PVI = PoV 7=1 .4 (65)

where -y is the adiabatic gas constant, P is the pressure, V is the volume of gas, Po is the
initial pressure charge, and Vo is the initial volume of gas. Let P and V/ be the changes
in pressure and volume produced by the vibration of the disk, i.e.

P = Po+-P v = vo+ +, (66)
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Combining equations 65 and 66, we obtain

( + T) (1 + i' 1  (67)

Assuming that P < Po and f/ Vo, it follows from equation 67 that

(+ P ) (1+4i -Yf/ - (68)
or

(69)

If u is the normal displacement of the disk, then the volume change V is given by

f =L udA (70)

The displacement u can be approximated by

u = uO1 I + u20 2 + u303 + u40 4  (71)

where 0i, 02, q, and 04 are the dominant mode shapes of the disk (normalized to be
unity at the disk center). Combining equations 69-71, we obtain

= -7P 0  ,A4 , (72)

where a,• is defined by

a11 = •L•ndA (73)

The finite-element modal force component Fm• is given by

FmLP!Ai•mdA -"PAam (74)

Thus

Fm• = '/ Po A2 4

*,fo 4

= - ctkm u (75)

where

;im ff7PA2

F P- - (76)
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Let P be the fraction of the interior volume that is filled with gas. Then

V0 = Ah (77)

where A is the area of the disk and h is the half height of the cylindrical housing. Sub-
stituting equation 77 into equation 76, we get

SPoA78)

Equation 75 is the desired dynamic stiffness relation.

3.4 RADIATING DISKS AND DRIVE CAVITY

The radiating disks were modeled by using the finite-element method. Four symmetric
modes were used to represent the motion of the disks. The modes were normalized so that
the normal component of displacement at the disk center was unity. In terms of these
modes the equation of motion for the m-th element can be written

Mifi'(t) + Kiut(t) = P,(t)Ap - F,,(t) i = 1,2,3,4 (79)

where Mi is the modal mass of the i-th mode, K. is the modal stiffness of the i-th mode,
U' is the i-th modal displacement of the m-th element, Pm is the drive cavity pressure of
the m-th element, Ap is the area of the drive piston, and F, is the i-th modal component
of the acoustic radiation force on the m-th element. This equation can be written in the
alternative form

'(t) + K=u4 (t) Pn(t)Ap - Fm(t) (80a)
tm(t) = 4(t) (80b)
S(t) = vt,1() i= 1,2,3,4 (80c)

Equation 7 for the radiation force in the linear model can be extended to this problem as
follows:

4 N t
F,(t ='j p(r)a-n(t - -r) dr i = 1,2,3,4 (81)

j=1 nf=10

Combining equations 80 and 81, we obtain

4 4•N
Mia,,(t) + Kiu' (t) = Pm(t)Ap - F, kj (t) -E i ,(-r)aj (t - -r) dr (82a)

jui j=1 n.1

i)m(t) = a,,(t) (82b)
i&'(t) = vu(t) i= 1,2,3,4 (82c)
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In order to solve the differential-integral equations for this problem, we will rewrite
equations 82 as was done in the linear problem. Let t be in the interval t, < t 5 t,+s.
Then the integrals on the right-hand side of equation 82 can be split as follows:

4,(r) a,'. (t-,r)d-r = J 'j (,-r)a(t-,r)d- + J,•,.C(-)a•,(t-,r)d'r (83)

Since an element does not feel the effects of its neighboring elements immediately, it
follows that j,0 C(,)a,(t - -) d-r = 0 m 96 n (84)

When m = n the first integral in equation 83 can be approximated by using the trapezoidal
rule as follows:

j0 2s~1 Ta( - ) T -~ I4,(O)aGln(t) + Im(t - tr)a()]85

Inserting equations 83-85 into equation 82 yields

Mi,.(t) + (L,• ,,(O)aj (t) Pm(t)Ap - Kjui,( - kijui,,(t) -
j=1 j=l

E ,I uJ ~(T)aj(t -,r) cir-
j=l =1 t

(5Vn l',,(i - t7)aiCt,) (86a)
j-1

tL(t - a,(t) (86b)
vi•t:) = ~(v2t) i = 1,2,3,4 (86c)

The three equations in 86 can be solved for the as in terms of the remaining variables.

The pressure Pm in the drive cavity satisfies the equation

CPmn(t) = net flow into the cavity = Qn(t) - Apv'(t) (87)

where C is the compliance of the cavity, vu is the center velocity of element m, and Q'
is the flow into the drive cavity of the m-th element through the second-stage valve. Since
the modes were normalized to unity at the center, the velocity v:' can be written

4
V,() = v,,(t) (88)

The net flow Qn is given by

Qi(t) = Q'(t) - Q (t) (89)

where Q. and Qr are the supply and return flows for the m-th element. Substituting
equations 88 and 89 into equation 87 produces

Pm(t) = r - Q(,t) - A _ C (90)
7=1
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3.5 SUMMARY OF EQUATIONS

In this subsection we will present a summary of the differential-integral equations for a
hydroacoustic array obtained in previous subsections. The equations will be given for the
m-th element of an array. There will be a system of equations like this for each element
in the array.

Radiating disk equations:

i

6Vm = am

• = v. i = 1,2,3,4

where
* 4 4 N t

Mi,,,, + Kiu,, PmAP E k,,&m - E E/ ( T0 A.o,)al.(t r)- dr
j=1 j=1 n==1

Drive cavity equation:

Valve spool equations:

1
,1 = -- (F, + FFi - 2K.x,.)

MW,
zt,. = Vt,.

where

F,, = f(t,, ,,t)
+2 Q2Ffo -m -0. 36sgn (m.,) Ph r.--)

twDtxz,

Valve flow equations:

(L. + L.)Q. = P. - PD + + QIQ. supply port open
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(L.+L,.o -- PDAP - + 2)+ 2D--- QJQI return port open

Q*=sgn(P.-PD) V4gRL+ /-k-RL+k4IP. -PDI] supply port leakage

Qr= 89n (PD - P,) A4 RL + /fjlcAtRr + k4-1PD - Pr return port leakcage

The initial conditions for ui and vi (i = 1,2,3,4), z., v,, Q1, and Qr are taken to
be zero. The initial condition on the drive cavity pressure Pn is taken to be (P. + P')/2.
The solution procedure as outlined for the linear problem is applicable to the solution of
this set of differential-integral equations.

3.6 RESULTS

This subsection contains computation results from the time-domain model for both
single elements and arrays of HLF-6A transducers. The following normalizations have
been employed in the figures:

1. Frequency has been shifted by a value designated as FL.

2. Time has been divided by a/c, where a is the diameter of an element and c is the

sound speed.

3. All source levels have had the single-element target source level subtracted.

4. Array source levels also have had 20 loglo(N) subtracted, where N is the number of
elements.

5. Velocities have been divided by the sound speed c.

6. Drive cavity pressures have been divided by the supply pressure.

Figures 20-23 show a comparison of results from the NRaD model and the HAI model
for sinusoidal drives of four different levels and a number of different frequencies. At each
drive frequency the fundamental component of the time response is plotted. A drive level
of 0 dB corresponds to half the maximum displacement of the servovalve. For all drive
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levels the agreement is quite good, but there axe small differences (less than 1 dB) at the
higher drive levels. HAI models the load (disk+pressure compensation+radia.tion) by a
mass, stiffness, resistance, and shape factor for each drive frequency. The values of these
parameters are chosen to match the drive point impedance at the drive frequency. This
load is not correct at harmonics of the drive frequency produced by the nonlinearities
of the device. In addition this approach is not applicable to nonsinusoidal drive signals.
Figures 24-27 show the same comparison as above except that the NRaD model was
modified to use the HAI loads. For all drive levels the results are virtually identical. This
leads us to believe that the differences in figures 20-23 are due to differences in the way
the load was modeled.

The next eight figures contain comparisons related to the drive point impedance of
the load. Figures 28 and 29 show a comparison of the magnitude and phase of the drive
point impedance between the NRaD time-domain model and the NRaD frequency-domain
model. In the time-domain model only the fundamental components were used to form the
impedance. The agreement is quite good over the entire frequency band. Figures 30 and
31 show the same comparison for the HAI time-domain and frequency-domain models.
Again the agreement is excellent. Figures 32 and 33 show a comparison of the drive point
impedance magnitude and phase between the NRlaD frequency-domain model and the
HAI frequency-domain model. The agreement is excellent. Figures 34 and 35 show the
same comparison for the time-domain models. Again the agreement is good. Since the
NRaD and HAI models produce virtually the same drive point impedance at the load,
it appears that any differences in results must be due to higher harmonics of the drive
frequency.

The next four figures show results for a three-element line array in which the center-to-
center spacing is twice the element diameter. Figure 36 shows a comparison of normalized
source level computed with the NRaD time-domain model and the experimental results
obtained at Lake Seneca by Naval Research Laboratory/Underwater Sound Reference
Detachment (NRL/USRD).' The comparison is reasonably good both in levels and in
trends, but there appears to be a small frequency shift in the peaks. Figure 37 shows a
comparison of model results for a single element and for the three-element array. This
comparison indicates that at this element spacing the array source level can not be ob-
tained by adding 20 loglo(3) to the single-element source level. Figures 38 and 39 show
the time response of the center velocity and drive cavity pressure for the middle element
of the three-element array. The fact that the transient behavior dies out very quickly is
due to inherently high losses in the second-stage valve flow.

The next three figures are for a proposed six-element line array in which the center-to-
center spacing is 9.26 times the element diameter. Figures 40 and 41 show a comparison
of the time response of the center velocity and drive cavity pressure for a single element

'Data supplied by Steven Black of NRL/USRD in a private communication
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versus a middle element of the six-element array. At this large element spacing the results
are virtually identical. Figure 42 shows that the source level for this six-element array
can be obtained by adding 20 log,0(6) to the single-element source level.
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Figure 20. Single element, -6 dB drive level.
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Figure 21. Single element, -3 dB drive level.
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Figure 22. Single element, 0 dB drive level.
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Figure 23. Single element, 3 dB drive level.
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Figure 24. Single element, -6 dB drive level, HAI load model.
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Figure 25. Single element, -3 dB drive level, HAI load model.
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Figure 26. Single element, 0 dB drive level, HAI load model.
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Figure 28. NRaD impedance magnitude comparison.
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Figure 29. NRaD impedance phase comparison.
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Figure 30. HAl impedance magnitude comparison.
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Figure 31. HAl impedance phase comparison.
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Figure 32. Impedance magnitude, NRaD vs HAI, frequency-domain model.
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Figure 33. Impedance phase, NI~aD vs HAI, frequency-domain model.
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Figure 34. Impedance magnitude, NRaD vs HAI, time-domain model.
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Figure 35. Impedance phase, NRaD vs HAI, time-domain model.
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Figure 36. Source level for three-element array, experiment vs computed.
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Figure 37. Normalized source level, single element vs array.
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Figure 38. Velocity of middle element of three-element array at freq=FL.
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Figure 39. Drive cavity pressure of middle element of three-element array at freq=FL.
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4 CONCLUSIONS AND RECOMMENDATIONS

A mathematical model has been derived for an array of hydroacoustic transducers
and applied to the HLF-6A. The major new feature of this model is the time-domain
approach to the array acoustic interaction problem. This approach has been validated for
an array of simple linear transducers by comparison with a frequency-domain approach.
This linear problem was also used to study the effects of internal damping on the time
required to reach steady state. It was found that when the damping was small the time
to reach steady state could be very long compared with that of a single element. As
the damping was increased, the time to reach steady state decreased dramatically and
the steady state level became lower. Results for a single HLF-6A transducer have been
compared with corresponding results from HAI's computer model. The agreement is in
general very good. Slight differences are attributable to differences in the way acoustic
radiation loading is handled. The results of our time-domain model were also compared
with experimental results for a close-packed three-element array. The comparison showed
the same general trends and levels, but appeared to be slightly shifted in frequency. A
proposed, wide-spaced, six-element array was also modeled. At this proposed spacing the
interaction effects were minimal. In both the three- and six-element arrays the time to
reach steady state was about the same as for a single element since the internal damping
of the valve is large.

In the future we would like to investigate an alternative approach in which the in-
teractions are modeled at the drive point impedance level instead of at the radiation
impedance level. This would avoid the difficulty of choosing which modes to incorporate
in the model. We would also like to further modularize our computer code so that other
differential equation solvers could be employed.
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